

# www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

# Jameco P/N 42198

# 5101 FAMILY 256 x 4 BIT STATIC CMOS RAM

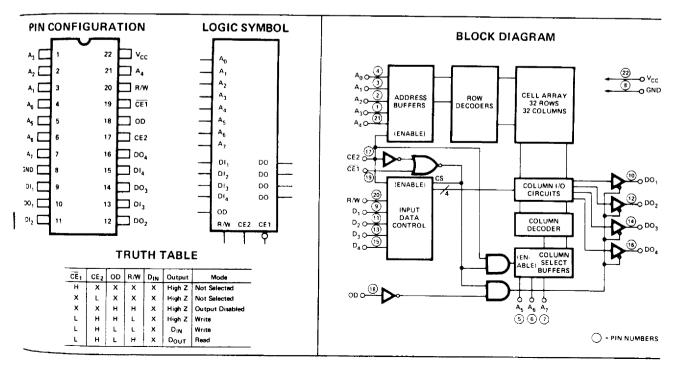
| P/N     | Typ. Current @ 2V<br>(µA) | Typ. Current @ 5V<br>(μΑ) | Max Access<br>(ns) |
|---------|---------------------------|---------------------------|--------------------|
| 5101L   | 0.14                      | 0.2                       | 650                |
| 5101L-1 | 0.14                      | 0.2                       | 450                |
| 5101L-3 | 0.70                      | 1.0                       | 650                |

### Single +5V Power Supply

 Ideal for Battery Operation (5101L)

# Directly TTL Compatible: All Inputs and Outputs

## Three-State Output


The Intel<sup>®</sup> 5101 is an ultra-low power 1024-bit (256 words  $\times$  4 bits) static RAM fabricated with an advanced ion-implanted silicon gate CMOS technology. The device has two chip enable inputs. Minimum standby current is drawn by this device when CE2 is at a low level. When deselected the 5101 draws from the single 5-volt supply only 10 microamps. This device is ideally suited for low power applications where battery operation or battery backup for non-volatility are required.

The 5101 uses fully DC stable (static) circuitry; it is not necessary to pulse chip select for each address transition. The data is read out non-destructively and has the same polarity as the input data. All inputs and outputs are directly TTL compatible. The 5101 has separate data input and data output terminals. An output disable function is provided so that the data inputs and outputs may be wire OR-ed for use in common data I/O systems.

The 5101L has the additional feature of guaranteed data retention at a power supply voltage as low as 2.0 volts.

A pin compatible N-channel static RAM, the Intel<sup>®</sup> 2101A, is also available for low cost applications where a 256  $\times$  4 organization is needed.

The Intel ion-implanted, silicon gate, Complementary MOS (CMOS) process allows the design and production of ultra-low power, high performance memories.



# Absolute Maximum Ratings \*

| Ambient Temperature Under Bias –10°C to 80°C            |
|---------------------------------------------------------|
| Storage Temperature                                     |
| Voltage On Any Pin                                      |
| With Respect to Ground , -0.3V to V <sub>CC</sub> +0.3V |
| Maximum Power Supply Voltage +7.0V                      |
| Power Dissipation 1 Watt                                |

# D. C. and Operating Characteristics

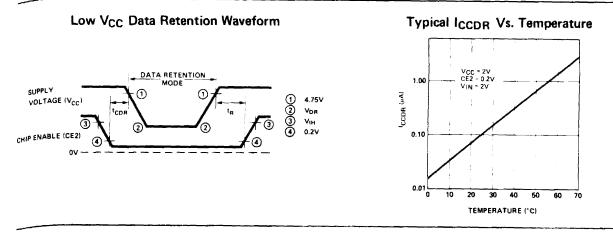
 $T_A = 0^{\circ}C$  to  $70^{\circ}C$ ,  $V_{CC} = 5V \pm 5\%$  unless otherwise specified.

#### \*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Symbol             | Parameter              |      | L and 51<br>Limits<br>Typ.[1] |      |      | 5101L-3<br>Limits<br>Typ.[1] |      | Units | Test Conditions                                                           |
|--------------------|------------------------|------|-------------------------------|------|------|------------------------------|------|-------|---------------------------------------------------------------------------|
| IL2[2]             | Input Current          |      | 5                             |      |      | 5                            |      | nA    |                                                                           |
| <sub>LO</sub>  [2] | Output Leakage Current |      |                               | 1    |      |                              | 1    | μA    | CE1=2.2V, V <sub>OUT</sub> =<br>0 to V <sub>CC</sub>                      |
| I <sub>CC1</sub>   | Operating Current      |      | 9                             | 22   |      | 9                            | 22   | mA    | V <sub>IN</sub> ≃V <sub>CC</sub> , Except<br>CE1 ≤ 0.65V,<br>Outputs Open |
| I <sub>CC2</sub>   | Operating Current      |      | 13                            | 27   |      | 13                           | 27   | mΑ    | V <sub>IN</sub> =2.2V, Except<br>CE1 ≤ 0.65V,<br>Outputs Open             |
| ICCL[2]            | Standby Current        |      |                               | 10   |      |                              | 200  | μΑ    | CE2 ≤ 0.2V, T <sub>A</sub> =<br>70° C                                     |
| VIL                | Input Low Voltage      | -0.3 |                               | 0.65 | -0.3 |                              | 0.65 | ν     |                                                                           |
| VIH                | Input High Voltage     | 2.2  |                               | Vcc  | 2.2  |                              | Vcc  | V     |                                                                           |
| VOL                | Output Low Voltage     |      |                               | 0.4  |      |                              | 0.4  | V     | I <sub>OL</sub> =2.0 mA                                                   |
| Voн                | Output High Voltage    | 2.4  |                               |      | 2.4  |                              |      | V     | 1 <sub>0H</sub> = -1.0 mA                                                 |

#### Low V<sub>CC</sub> Data Retention Characteristics (For 5101L, 5101L-1 and 5101L-3) $T_A = 0^{\circ} C$ to 70° C


| Symbol           | Parameter                                  | Min.                | Typ.[1] | Max. | Units | Test Cor   | nditions                                          |
|------------------|--------------------------------------------|---------------------|---------|------|-------|------------|---------------------------------------------------|
| V <sub>DR</sub>  | V <sub>CC</sub> for Data Retention         | 2.0                 |         |      | V     |            |                                                   |
| CCDR1            | 5101L or 5101L-1 Data Retention<br>Current |                     | 0.14    | 10   | μA    | CE2 ≤ 0.2V | V <sub>DR</sub> =2.0V,<br>T <sub>A</sub> =70° C   |
| ICCDR2           | 5101 L-3 Data Retention Current            |                     | 0.70    | 200  | μA    |            | V <sub>DR</sub> = 2.0V,<br>T <sub>A</sub> = 70° C |
| t <sub>CDR</sub> | Chip Deselect to Data Retention Time       | 0                   |         |      | ns    |            |                                                   |
| t <sub>R</sub>   | Operation Recovery Time                    | t <sub>RC</sub> [3] |         |      | ns    |            |                                                   |

#### NOTES:

1. Typical values are  $T_A \approx 25^{\circ}$ C and nominal supply voltage.

2. Current through all inputs and outputs included in ICCL measurement.

3. tRC = Read Cycle Time.



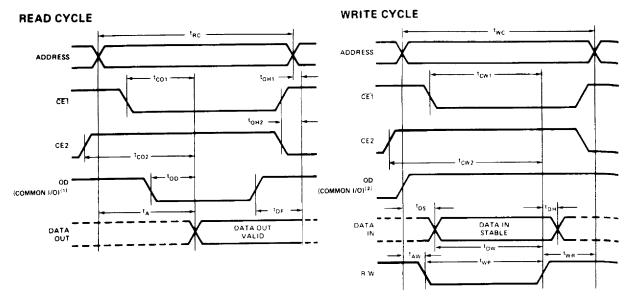
# **A.C. Characteristics** $T_A = 0^{\circ}C$ to $70^{\circ}C$ , $V_{CC} = 5V \pm 5\%$ , unless otherwise specified.

|                 |                                                            | 1    | 1L-1<br>ts (ns) | 5101L and<br>5101L-3<br>Limits (ns) |                                       |
|-----------------|------------------------------------------------------------|------|-----------------|-------------------------------------|---------------------------------------|
| Symbol          | Parameter                                                  | Min. | Max.            | Min.                                | Max                                   |
| trc .           | Read Cycle                                                 | 450  |                 | 650                                 |                                       |
| tA              | Access Time                                                |      | 450             |                                     | 650                                   |
| tco1            | Chip Enable ( $\overline{CE 1}$ ) to Output                |      | 400             |                                     | 600                                   |
| tc02            | Chip Enable (CE 2) to Output                               |      | 500             |                                     | 700                                   |
| top             | Output Disable to Output                                   |      | 250             |                                     | 350                                   |
| tDF             | Data Output to High Z State                                | 0    | 130             | 0                                   | 150                                   |
| toh1            | Previous Read Data Valid with<br>Respect to Address Change | 0    |                 | 0                                   |                                       |
| toh2            | Previous Read Data Valid with<br>Respect to Chip Enable    | 0    |                 | 0                                   |                                       |
| TE CYCLI        |                                                            |      |                 |                                     |                                       |
| twc             | Write Cycle                                                | 450  |                 | 650                                 |                                       |
| t <sub>AW</sub> | Write Delay                                                | 130  |                 | 150                                 |                                       |
| tcw1            | Chip Enable (CE 1) to Write                                | 350  |                 | 550                                 | ·                                     |
| tcw2            | Chip Enable (CE 2) to Write                                | 350  |                 | 550                                 | · · · · · · · · · · · · · · · · · · · |
| tow             | Data Setup                                                 | 250  |                 | 400                                 |                                       |
| t <sub>DH</sub> | Data Hold                                                  | 50   |                 | 100                                 |                                       |
| twp             | Write Pulse                                                | 250  |                 | 400                                 |                                       |
| twr             | Write Recovery                                             | 50   |                 | 50                                  |                                       |
| t <sub>DS</sub> | Output Disable Setup                                       | 130  |                 | 150                                 |                                       |

#### A.C. CONDITIONS OF TEST

| input Pulse Levels:  | +0.65 Volt to        | 2.2 Volt |
|----------------------|----------------------|----------|
| input Pulse Rise and | Fall Times:          | 20 nsec  |
| Timing Measurement   | Reference Level:     | 1.5 Volt |
| Output Load:         | 1 TTL Gate and $C_L$ | - 100pF  |

# **Capacitance**<sup>[2]</sup>T<sub>A</sub> = 25°C, f = 1 MHz


| Symbol          | Test                                                       | Limits (pF) |      |  |
|-----------------|------------------------------------------------------------|-------------|------|--|
| зушьог          | Test                                                       | Тур.        | Max. |  |
| C <sub>IN</sub> | Input Capacitance<br>(All Input Pins) V <sub>IN</sub> = 0V | 4           | 8    |  |
| COUT            | Output Capacitance V <sub>OUT</sub> = 0V                   | 8           | 12   |  |

NOTES: 1. Typical values are for  $T_A = 25^{\circ}C$  and nominal supply voltage.

2. This parameter is periodically sampled and is not 100% tested.

# Waveforms

. ...



#### NOTES:

- 1. OD may be tied low for separate I/O operation.
- During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation.